

Improving Chromatographic Performance of Underivatised Anionic Polar Pesticides in Food to Overcome Renowned Analytical Challenges

Ken Rosnack Principal Market Development Manager Food & Environmental Markets

2018

1

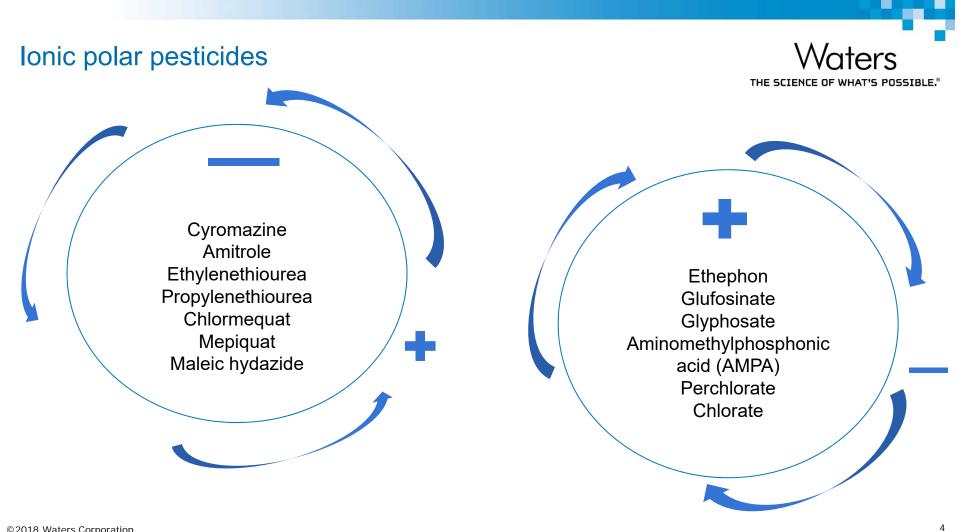
Introduction

- Multiresidue analyses determine as many residues as possible in the smallest number of analyses
 - Generic extraction, no/limited cleanup, highly selective determination step (GC- and LC-MS/MS or HRMS)
 - A number of different very successful implementations
 - e.g. QuEChERS, mini Luke...
- Polar pesticides in many cases are not amenable to the generic multiresidue approach as they are challenging to analyse.
- The source of these difficulties arise from the physicochemical properties of these compounds, which impact and complicate each stage of the analysis.
- Historically these compounds have been analysed in a series of selective single residue methods (SRM), adding significant costs so were often excluded from surveillance.
- As well as glyphosate, EU screening labs also want to include AMPA (glyphosate metabolite) and a number of other challenging polar pesticides in a single method.

©2018 Waters Corporation

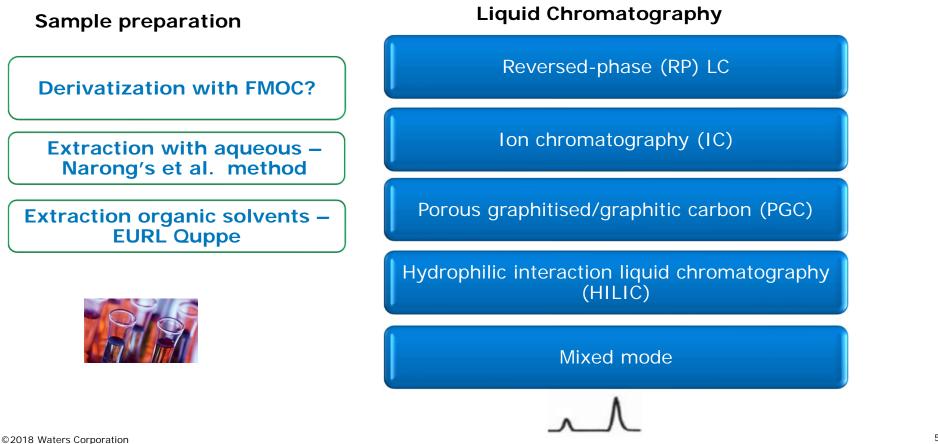
THE SCIENCE

What and Why?

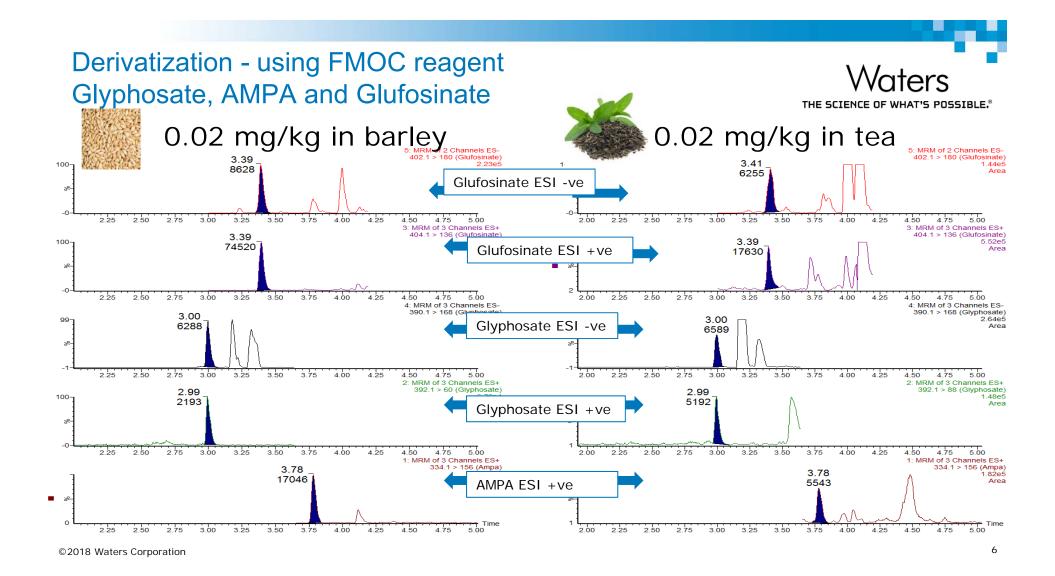


Maximum Residue Limits (**MRL**s), are legislative limits on the concentrations of residual pesticides and their metabolites in fresh food.

> Ethephon – approved but frequent MRL violations 2016 figures from RASFF, 4 alerts and 3 information for attention notifications covering, grapes, tomatoes, peppers and figs

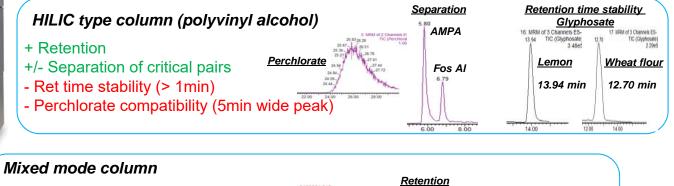

Glyphosate used as a desiccant on cereal crops to aid harvest- results in a increased frequency of residues in cereal-based products such as bread and breakfast cereals and beer.

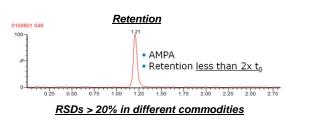
> **Chlorate** – Biocide banned by EU in 2010 because of health risks **Perchlorate** – EU established MRLS of 10 μg/kg for most foods in 2015



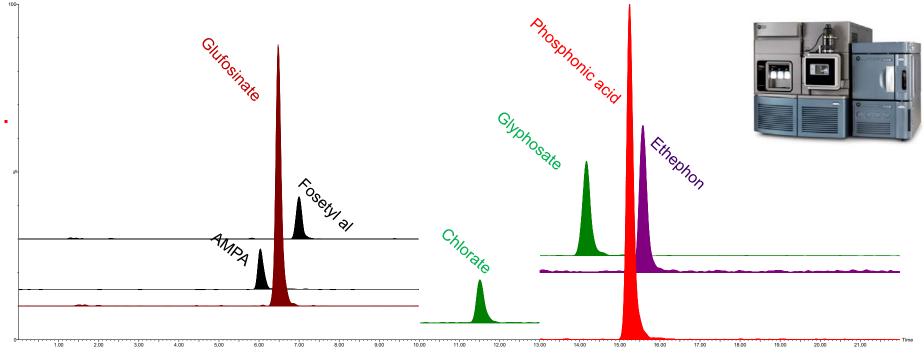
Options for Analysis and Sample preparation

THE SCIENCE OF WHAT'S POSSIBLE.


5

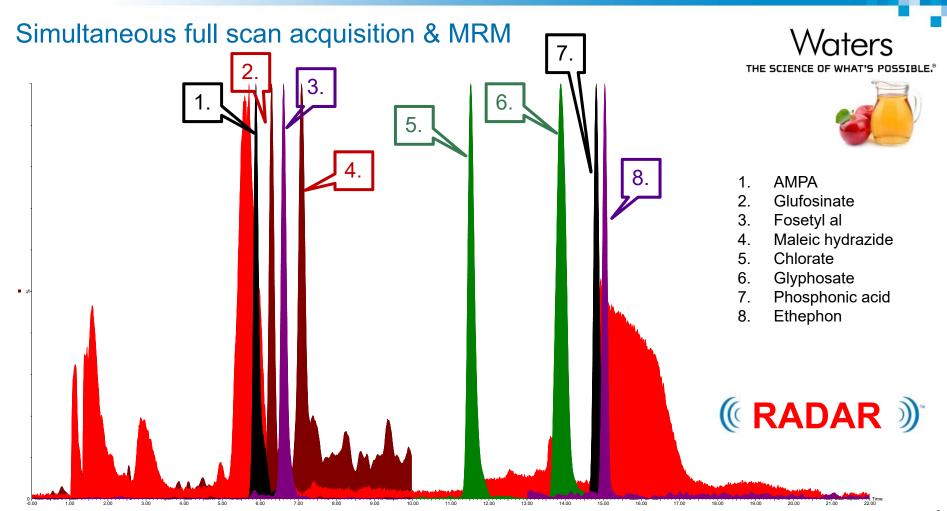

Our experiences so far ...

- Retention
- Separation of critical pairs
- Ret time stability

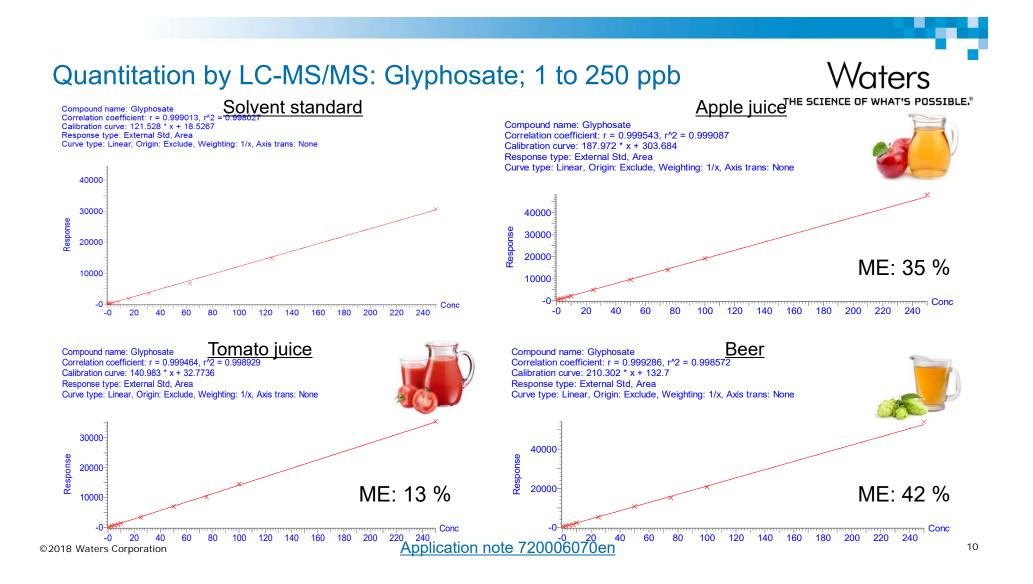

©2018 Waters Corporation

7

Chromatographic separation: HILIC Polyvinyl alcohol based LC column



- 0.01 mg/kg in beer and extracted as per the EURL Quick Polar Pesticides Extraction method
- MP A: 68:12: 20 water: 45mM ammonium bicarbonate: MeCN; MP B: 50mM ammonium bicarbonate



©2018 Waters Corporation

Application note 720006070en

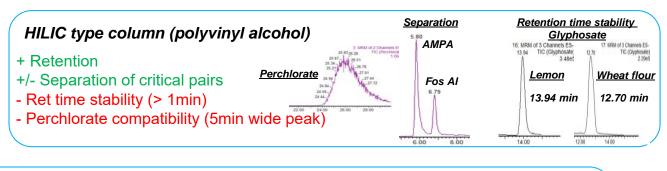
^{©2018} Waters Corporation

Recoveries and repeatability

							THE SCIENCE OF	WHAT'S POSSIBLE
			Apple juice		Tomato juice		Beer	
	Conc (mg/kg)	n	Mean (mg/kg)	RSD (%)	Mean (mg/kg)	RSD (%)	Mean (mg/kg)	RSD (%)
Glufosinate	0.01	9	0.0092	9.8	0.0100	9.0	0.0099	5.7
	0.05	9	0.0501	4.9	0.0521	3.9	0.0528	4.0
	0.10	9	0.1039	4.6	0.0980	2.9	0.1047	3.6
Glyphosate	0.01	9	0.0099	8.5	0.0106	9.8	0.0107	4.5
	0.05	9	0.0507	6.1	0.0508	3.8	0.0549	5.7
	0.10	9	0.1046	6.0	0.0961	2.0	0.1068	3.1
Ethephon	0.01	9	0.0095	8.7	0.0097	7.7	0.0106	6.2
	0.05	9	0.0457	6.3	0.0522	3.4	0.0541	5.7
	0.10	9	0.0934	5.0	0.1006	3.5	0.1055	3.7
AMPA	0.01	9	0.0108	9.8	0.0094	2.1	0.0100	7.4
	0.05	9	0.0498	9.0	0.0460	5.4	0.0542	5.6
	0.10	9	0.1011	8.1	0.0912	2.8	0.1060	5.1
Fosetyl Al	0.01	9	0.0095	9.0	0.0090	6.6	0.0106	4.4
	0.05	9	0.0518	4.5	0.0440	1.6	0.0548	5.2
	0.10	9	0.1061	3.2	0.0900	1.5	0.1054	4.3
018 Waters Corporation	n <u>Application note 720006070en</u> 1							

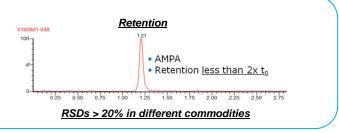
Waters

Our experiences so far ...


+ Separation of critical pairs

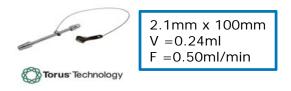
- + Ret time stability
- + Perchlorate compatibility

HILIC type column


Torus Technology

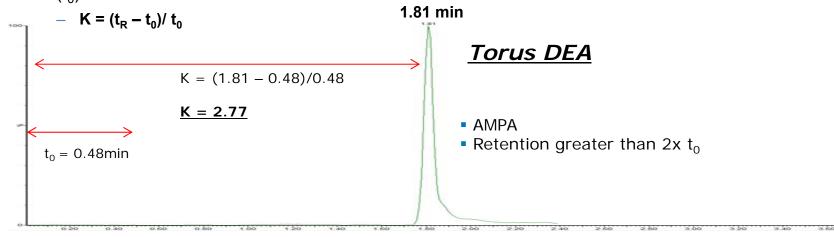
Mixed mode column

- Retention
- Separation of critical pairs
- Ret time stability

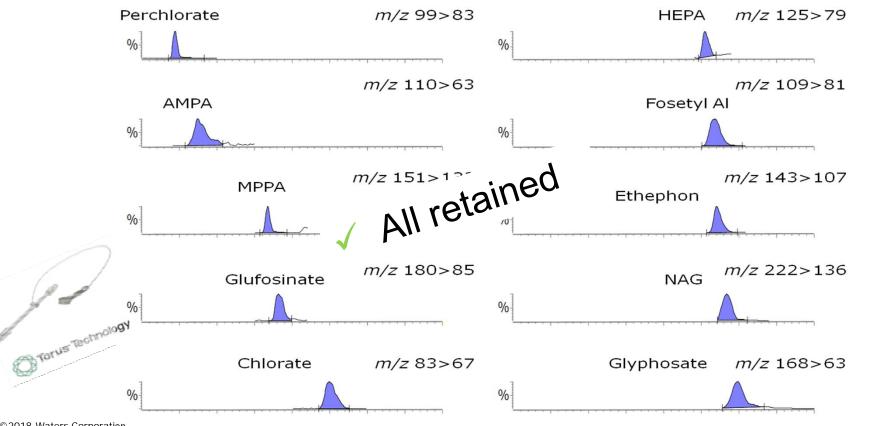

©2018 Waters Corporation

Waters

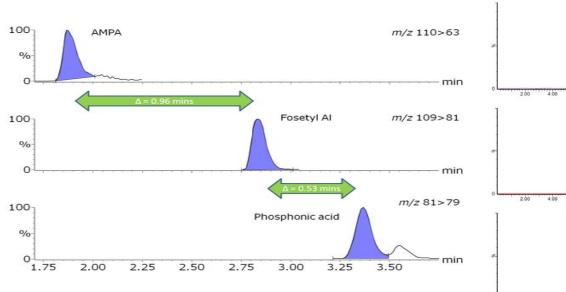
THE SCIENCE OF WHAT'S POSSIBLE.


Calculating Column 'Dead' Volume to TORUS DEA 2.1 x 100mm

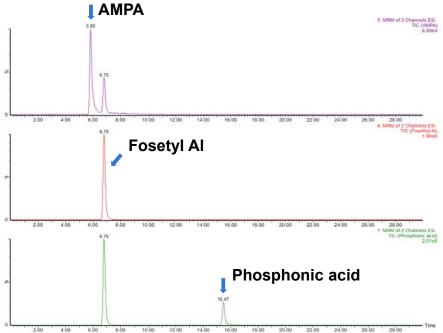
- Time required for one volume of mobilephase to exit the column
 - No retention occurs before the t₀
- t₀ is needed to calculate retention factor
 - $t_0 = V/F$


THE SCIENCE OF WHAT'S POSSIBLE.

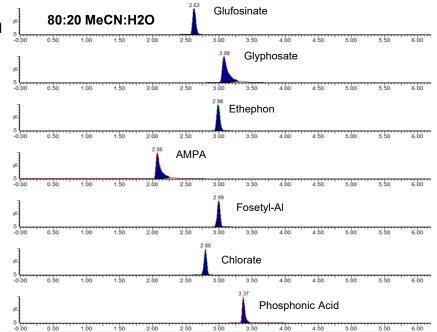
 Retention Factor (K) is the measurement of a columns retention in relation to the column 'dead volume' (t₀)

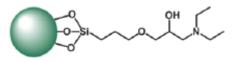

Chromatography: Example in spinach at 0.01 mg/kg

Waters THE SCIENCE OF WHAT'S POSSIBLE.®


Chromatography: Critical compounds

TORUS column


HILIC type column (polyvinyl alcohol)



Torus DEA – Polar pesticides analysis Some background

Torus DEA, 130Å, 1.7μm, 2.1 mm x 100 mm

- DEA: Diethylamine HILIC/WAX
- Ethylene bridged hybrid (BEH) particle
- Two stage functionalization
 - Control retention characteristics
 - Selectivity and peak shape

Patented Approved Technology

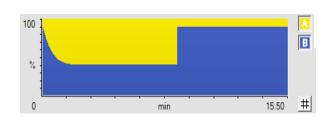
©2018 Waters Corporation

(methodology patent pending)

16

THE SCIENCE OF WHAT'S POSSIBLE.

Experimental: MS parameters

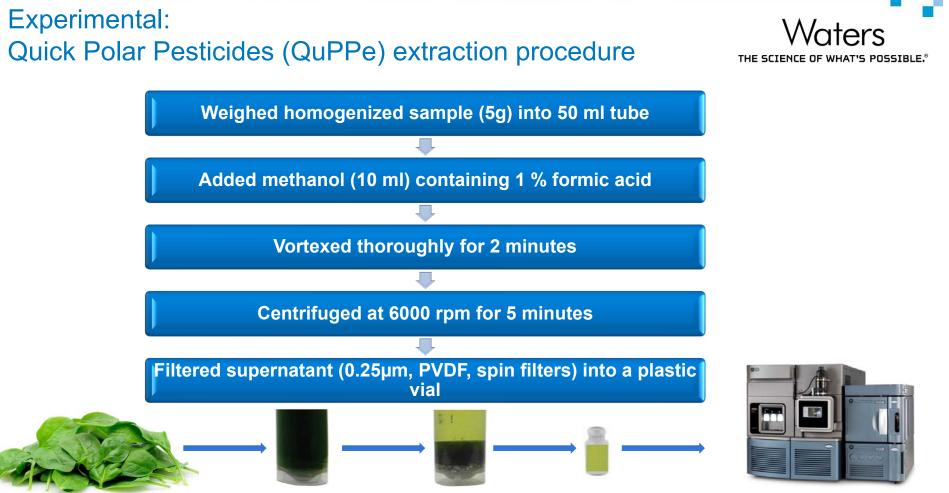

Capillary voltage (kV)	2.4
Source temperature (°C)	150
Desolvation temperature (°C)	600
Cone gas flow (L/Hr)	300
Desolvation gas flow (L/Hr)	1000
Nebuliser (bar)	7

				Waters
<u>Compound</u>	lon mode	Transitions	Cone voltage (V)	Collision energy (eV)
Glyphosate	ESI-	167.85 > 62.80 167.85 > 80.80 167.85 > 149.85	15	15 15 10
AMPA	ESI-	109.80 > 62.80 109.80 > 78.80 109.80 > 80.80	15	15 15 10
Glufosinate	ESI-	179.90 > 62.80 179.90 > 84.85 179.90 > 134.00	15	25 17 16
Chlorate	ESI-	82.85 > 66.80 82.85 > 50.80	15	14 15
Ethephon	ESI-	142.85 > 78.75 142.85 > 106.85	15	13 8
Fosethyl Aluminium	ESI-	108.85 > 62.80 108.85 > 80.80	15	16 10
Phosphonic acid	ESI-	80.80 > 62.80 80.80 > 78.80	15	15 10
Perchlorate	ESI-	98.80 > 66.90 98.80 > 82.85	20	45 18
Ethephon Hydroxy	ESI-	124.80 > 78.80 124.80 > 94.80 124.80 > 106.90	15	14 12 11
MPPA	ESI-	150.70 > 62.80 150.70 > 106.85 150.70 > 132.85	15	25 16 12
N-Acetyl-Glufosinate	ESI-	221.90 > 58.90 221.90 > 135.90 221.90 > 161.90	20	14 20 12

Experimental: LC conditions

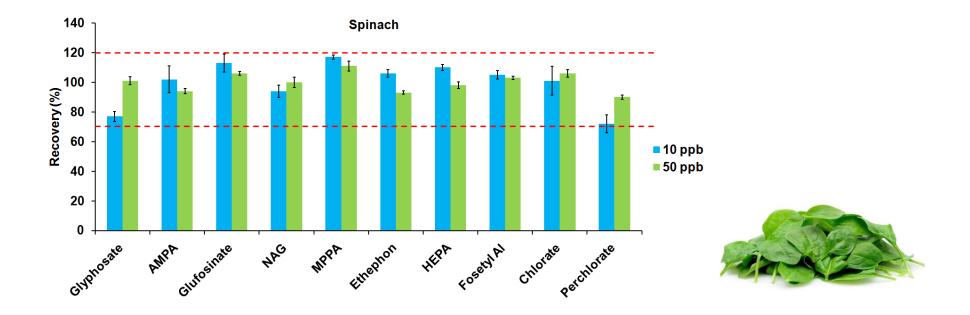
Column Torus DEA column (130Å, 1.7 µm, 2.1 x 100 mm) I Class FL LC System Solvent A 50 mM Ammonium Formate pH 2.9 (0.9% Formic Acid) Solvent B MeCN + 0.9% Formic Acid **Column Temp** 50°C 10°C Sample Temp Injection 10 µL Volume Flow rate 0.5 mL/min

Time (min)	%A	%B	Curve
0	10	90	-
4.50	60	40	2
8.50	60	40	6
15.50	10	90	1



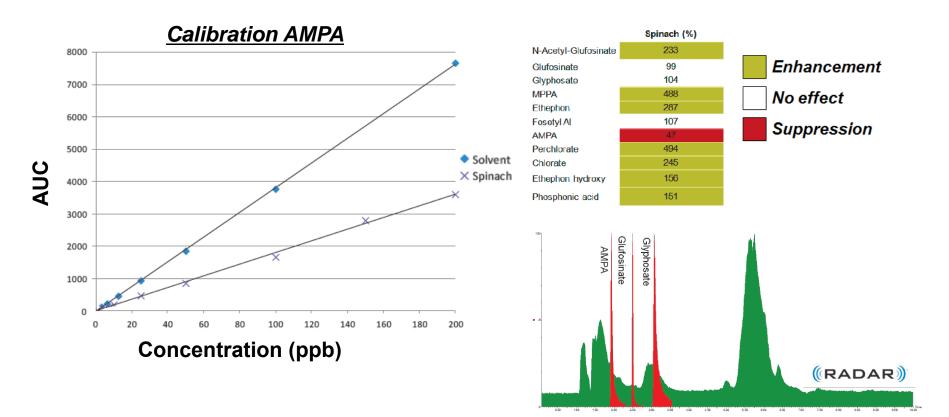
©2018 Waters Corporation

(methodology patent pending)

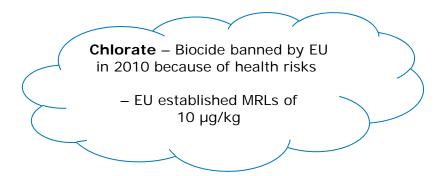

18

© 2018 Waters Corporation http://www.eurl-pesticides.eu/userfiles/file/EurlSRM/meth_QuPPe-PO_EurlSRM.pdf

Method performance: Recoveries and repeatability


Waters THE SCIENCE OF WHAT'S POSSIBLE."

Incurred residue of phosphonic acid was detected and so has been omitted from the results


Matrix effects

Waters THE SCIENCE OF WHAT'S POSSIBLE.*

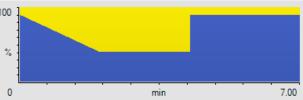
Chlorate and Perchlorate Analysis

How

 An alternative LC-MS/MS method with chromatographic separation achieved on the TORUS DEA column, applying an ammonium formate mobile phase gradient.

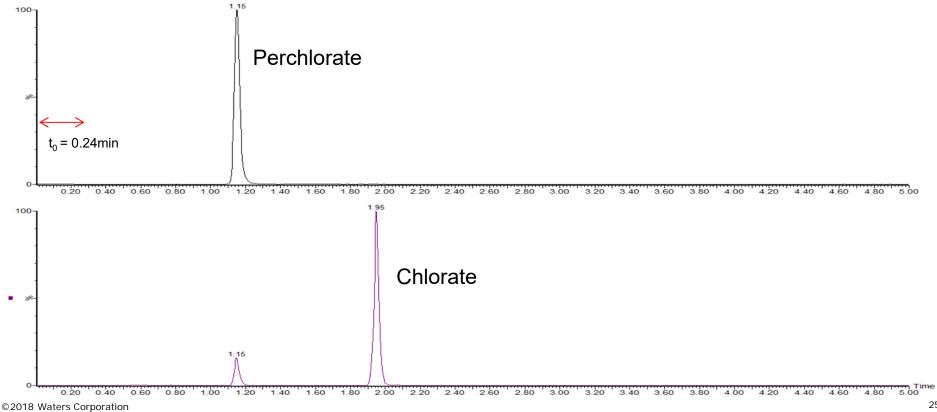
Benefits

- Short seven minute run time
- UPLC technology providing optimal peak shapes
- Excellent retention and separation, separation is key due to isobaric interference of perchlorate in chlorates transition.
- Excellent linearity and sensitivity

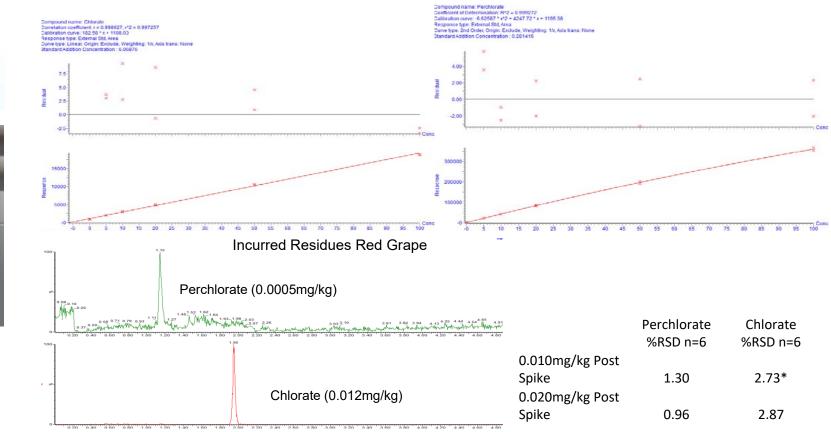

Torus DEA Chlorate and Perchlorate analysis - LC conditions

Waters The science of what's possible.®

Column	Torus DEA column (130Å, 1.7 μm, 2.1 x 50 mm)			
LC System	I Class FL			
Solvent A	50 mM Ammonium Formate pH 2.9 (0.9% Formic Acid)			
Solvent B	MeCN + 0.9% Formic Acid			
Column Temp	50°C			
Sample Temp	10°C			
Injection Volume	3.0 µL			
Flow rate	0.5 mL/min			



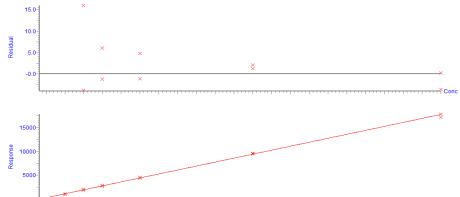
Time (min)	%A	%В	Curve	
0	10	90	-	100
2.00	60	40	6	%
4.25	60	40	6	
7.00	10	90	1	0

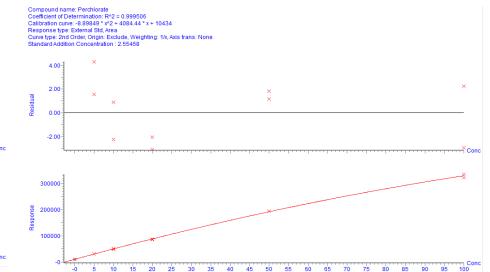


Red Grape: 0.01 mg/kg spiked post QuPPe extraction

atore THE SCIENCE OF WHAT'S POSSIBLE.

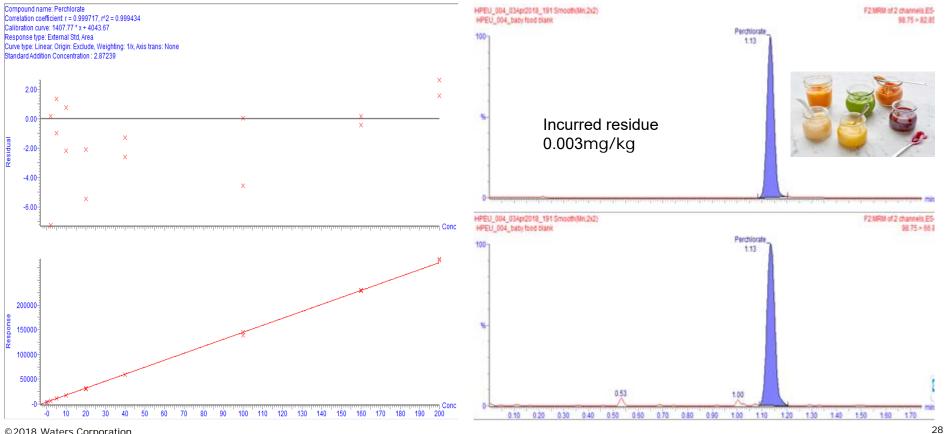
Grape QuPPe Extraction: Post Spike Matrix Matched 0.010mg/kg – 0.2mg/kg


©2018 Waters Corporation


Waters

THE SCIENCE OF WHAT'S POSSIBLE.

	Perchlorate %RSD	Chlorate %RSD
	n=6	n=6
0.005 mg/kg	0.78	3.28
0.01 mg/kg	1.49	2.63


Waters

THE SCIENCE OF WHAT'S POSSIBLE.

©2018 Waters Corporation

-5

Infant Food QuPPe Extraction: Post Spike Matrix Matched 0.002mg/kg - 0.2mg/kg

©2018 Waters Corporation

Waters

THE SCIENCE OF WHAT'S POSSIBLE.

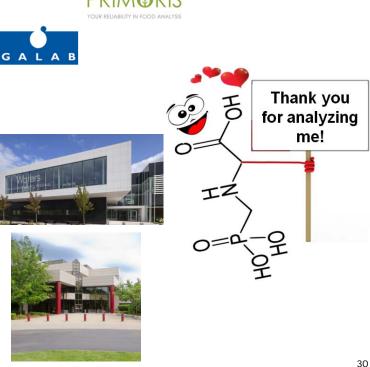
Conclusions

- Expanding on previous LC-MS/MS methods, initial work using the Torus DEA has demonstrated excellent performance for the reliable analysis of polar pesticides in food
- Key benefits include:
 - Improved chromatographic performance for a broad scope of anionic pesticides in a single injection
 - Suitable application for checking compliance with **EU MRLs** and in agreement with **SANTE** guidelines
 - Maintained system sensitivity with LOQs < 0.01 mg/kg in different commodities
 - Repeatable quantitative analysis, with RSDs < 10% achieved at 0.01 mg/kg in spinach without isotopically labelled internal standards
 - Incurred residues of analytes accurately quantified using standard addition calibration

Acknowledgements

References

- 1. European Commission (2016) EU Pesticide Database [Online] http://ec.europa.eu/food/plant/pesticides/eupesticidesdatabase/public/?event=pesticide.residue.sel ection&language=EN (Accessed 7 February 2018)
- 2. European Commission (2016) QuPPe Method [Online]. http://www.eurlpesticides.eu/userfiles/file/EurISRM/meth QuPPe-PO EurlSRM.pdf (Accessed 7 February 2018)
- 3. Wuyts B. et al. (2016). Highly sensitive analysis of polar pesticides in food matrices. 720005822EN
- 4. Wuyts B. et al. (2017). Improved multi-analyte _ method for the underivatized analysis of anionic pesticides in food by LC-MS/MS. 720006070EN
- 5. European Union (2017). Document No. SANTE 11813/2017. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed
- 6. Waters (2017). Torus DEA Column Startup Guide for Polar Pesticide Separations. 720006156EN


Acknowledgements

- Customers
 - UGRL, Turkey 0
 - Primoris, Belgium 0
 - Galab, Germany 0

Waters Wilmslow

- Euan Ross 0
- **Benjamin Wyuts** 0
- **Eimear McCall** 0
- Simon Hird 0
- Waters Milford
 - Gareth Cleland 0
 - **Dimple Shah** 0

aters

THE SCIENCE OF WHAT'S POSSIBLE.

Thank you for your attention

www.waters.com